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Experiments and quasiclassical trajectory calculations of intermolecular energy transfer indicate that the energy-
transfer probability distribution function,P(E′,E) has a significant contribution from high-energy collisions,
sometimes denoted as supercollisions. One functional form ofP(E′,E) which is used to fit the data is a
biexponential function with a low-energy exponential and a high-energy exponential which provides the high-
energy tail. To assess the importance of the high-energy collisions, the present work evaluates the contribution
of the high-energy tail to the value of the unimolecular rate coefficient by assuming model biexponential
probability functions and solving the appropriate master equations. Since the strong collision part of the
biexponential function contributes to small values of the energy exchanged,∆E, as well, a distinction is
made between the high-energy exponential and the tail of the probability function that represents supercollisions.
Solving a master equation with the tail only, shows that supercollisions, in spite of their small numbers,
contribute, under certain conditions, significantly to the values of the low pressure unimolecular rate coefficient.

Introduction

Collisional energy transfer provides the mechanism for
accumulation and dissipation of energy in thermal unimolecular
reactions. The competition between the chemical reaction and
the energy transfer is determined by the energy-dependent rate
coefficients,k(E), for chemical reactions and the pseudo first-
order energy transfer rate coefficients,R(E′,E) of getting from
level E to level E′.1-6 Little is known experimentally about
the energy-transfer rate coefficients, their dependence on the
initial energy,E, and on the energy gap,E′ - E. Experiments
in reactive systems7-9 showed first in 1988 that these rate
coefficients are not negligible even at large energy gaps, and
more recent physical experiments are aimed at mapping the
entire energy-transfer rate coefficient matrix.10-13 This same
goal can be achieved by modeling using classical trajectory
calculations.14-18 The technology of such calculations has been
established, and it seems that they can be trustfully applied to
gain energy-transfer details that are not available experimentally.
These calculations support the observation thatR(E′,E), as a
function of the energy gap, has a long tail,19-24 and cannot be
represented by a single exponential. An indirect comparison
between classical calculations and quantum scattering calcula-
tions for benzene-rare gas atoms25a,band a direct comparison
for CS2-He25c indicate that classical calculations can be used
to study intermolecular energy transfer.
Collisions transferring an unexpectedly large amount of

energy (in terms of the traditional picture of energy transfer in
unimolecular systems which assumes an exponential or a
stepladder form ofP(E′,E)) are termedsupercollisions. A
quantitative definition of them is that they are collisions that
transfer more energy than some multiple of the average energy
transferred per collision in the given system.24-27 The fraction
of collisions belonging to this class of collisions is generally
very small, but their effect on energy transfer is much larger
than expected from their relative weight. Detailed model studies

were performed in order to quantitatively determine the influ-
ence of the high-energy collisions on the pressure dependent
rate coefficients.27,28 In these calculations, the matrix ofR(E′,E)
was built up in a way which enabled a separation of “weak”
from “strong” collisions. They are represented by the first and
second terms respectively of the right-hand side of eq 1. Then,
the matrixes were changed systematically by changing the
amount or size of the strong collision part ofR(E′,E) such that
the effect of supercollisions could be evident. In these calcula-
tions, the energy gap dependence of the energy-transfer rate
coefficient was constructed from a double-exponential prob-
ability function which for down transition is given by

multiplied by the hard-sphere collision rateZ. C(E) is the
normalization coefficient and the sum ofa1 anda2 equal unity.
One of the exponential contributions,R1, describes the bulk of
the collisions and has a much larger weight,a1, than the part
containingR2. However, it decreases much faster with the
energy gap in agreement with the fact that most collisions are
weak. The second exponential describes the long tail of the
distribution. Some of the collisions that are represented by this
part are also “weak”, i.e., this distribution is also skewed toward
small gaps. Clearly, another functional form forP(E′,E) could
be used. However, in the absence of information on the actual
shape of the function, the biexponential function provides a
facile expression to handle and insight into the strong and weak
collisions contributions to the values of the rate coefficients and
average quantities.
When theR(E′,E) ) ZP(E′,E) matrix was introduced into the

master equation and the latter was solved, the very important
role of supercollisions became evident. The omission of the
latter lead to rate coefficients of up to 10 times less than obtained
in their presence even if their relative weight was very small.
In the following we refer to the first part of the probability
function as the “weak collision” (WC) part and to the secondX Abstract published inAdVance ACS Abstracts,March 1, 1997.

P(E′,E) ) [a1 exp(-∆E/R1) + a2 exp(-∆E/R2)]/C(E) (1)
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as the “strong collision” (SC) part. Comparison of the weight
and exponential parameters obtained by fitting a double-
exponential function to experimental results obtained from
deconvolution of shape functions29with those obtained by fitting
a biexponential function to trajectory calculations results21,24,26

showed that for the latter the relative weight of the “strong”
contribution was too large (a2 being 1 order of magnitude
smaller thana1 in contrast to 2 or 3 orders of magnitude obtained
in fitting experimental results), and the rate of decrease with
the energy gap was too small (R2 too small compared withR1).
Model calculations using experimentally based values27 and
using trajectory-based energy-transfer rate coefficient matrixes26

also emphasized the importance of the “strong” contribution
(involving supercollisions) both in the relaxation of ensembles
of excited molecules in the absence of reactions21 and in reactive
systems.27 If R2 is systematically increased when all other
parameters are fixed, the ratio of the unimolecular rate coef-
ficient with the “strong” contribution to that without it increases
monotonously up to 10-50 depending on the ratio of the
weighting factorsa2 anda1.
It is not clear from model calculations performed so far as to

how the high-energy collisions affect the rate coefficient since
they were not clearly separated from the “weak” collisions which
emanate from the strong and weak parts of the biexponential
function. This is so because the “strong” contributor to the
distribution introduces also collisions with values of∆E smaller
than the threshold value assigned to the high-energy collisions,
and therefore only a fraction of the class of strong collisions
belongs to the class of supercollisions. To evaluate the pure
effect of the high-energy tail, we performed another set of model
calculations in which only the contribution of collisions in the
supercollision tail of the distribution was considered.

Methods

In the model calculations reported here, the maximum
contribution of the high-energy collisions to the value of the
unimolecular rate coefficient was studied at the low-pressure
region,27 where the supercollision effect is expected to be the
largest. At pressures in the falloff the effect is smaller, and at
the high-pressure limit the value of the unimolecular rate
coefficient is independent of collisional effects, and therefore
high-energy collisions are not expected to affect its value. To
evaluate the supercollision contribution, an assumed double
exponential transition probability function is used (eq 1).
Equation 1 describes the down collisions part ofP(E′,E) which
is kept constant. The up-collision part has a temperature
dependence via microscopic reversibility. Figure 1 indicates
the contributions of WC and SC to the value ofP(E′,E) as a
function of the amount of energy transferred,∆E. In our
systematic study we have “takenP(E′,E) apart” and solved the
master equation, ME, for cyclobutene isomerization (and
cyclobutane fission not reported here). The double-exponential
probability function was normalized, and detailed balance was
strictly observed. From thisP(E′,E) we have calculated the
value of the unimolecular rate coefficientkuni. When we studied
the effect of various parts ofP(E′,E) on the kinetics of the
reaction, we omitted parts of the distribution without changing
the remaining elements of the energy-transfer probability
function matrix. This enabled us to evaluate the relative
contribution of the various parts of the distribution to the low-
pressure rate coefficient. Our results, therefore, are presented
askuni/P, whereP is the pressure. Throughout the calculations
of the low-pressure rate coefficient the value ofR1 was kept
constant at 300 cm-1 and the value ofR2 was varied systemati-
cally between 300 and 10 000 cm-1 and the temperature changed

between 500 and 1500 K. The details of the calculations,
threshold energies, vibrational frequencies, and the rest of the
RRKM theory parameters, are given in refs 28 and 30.
As we attempt to explore the role supercollisions play in the

collisional effects in the kinetics of unimolecular reactions, a
quantitative definition is needed. The collisions that transfer
“extremely large” amounts of energy are represented by the long
tail of the energy-transfer probability distribution that was not
assumed in the traditional model probability distributions. The
single-exponential function used previously to fit experimental
data had a tail much smaller than the tail of the function used
in the present study. The value of the energy transferred in a
supercollision is certainly not a universal one and, to some
extent, must be system dependent. It was recommended in the
past that those high-energy collisions should transfer more than
5 times the average energy transferred in a down collision.25

This applies to microscopic systems, and it takes in consideration
only the properties of the energy-transfer probability matrix,
i.e., the energy transferred from an excited molecule in a single
collision. In the bulk, the interplay between energy transfer
and chemical reaction must be taken into account.
To have an indication of the intrinsic average size of the

energy transferred under the actual conditions for reaction, we
have to take into consideration the steady-state population which
is involved in the energy-transfer process. We do so by
calculating the ensemble average energy transferred per down
collision in the system defined as

wheref(E) is the steady-state population which for weak collider

Figure 1. Biexponential transition probability function (s) as function
of the∆E showing the weak (‚‚‚) and strong (- - -) collisions parts and
the cutoff value∆E# (vertical line) forR1 ) 300 cm-1, R2 ) 3000
cm-1, and T) 1000 K. (a) Probability function fora1 ) 0.995 anda2
) 0.005. (b)a1 ) 0.9 anda2 ) 0.1.

〈〈∆E〉〉d )∫0∞ 〈∆E〉df(E) dE (2)
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at low pressures is different from the Boltzmann population
distribution. Supercollisions can be considered as those colli-
sions that transfer much larger values of energy than this
average. As an approximate measure, one could say the
threshold value for such high-energy collisions should be larger
than some multiple of〈〈∆E〉〉d (or for that matter of〈〈∆E〉〉up).
As a rough estimate, we chose a factor of 5, as was done in
previous studies25 of a microscopic system where〈∆E〉d applies,
as the limit above which one would consider a “supercollision”.
Therefore, we have calculated〈〈∆E〉〉d, at predetermined tem-
perature and pressure, for a given reaction with a biexponential
probability distribution, and considered the effect of the “tail
of the distribution” by omitting all collisions which transfer (up
or down) |∆E| values which are smaller than 5〈〈∆E〉〉d. The
factor of 5 used may be too small or can shift the limit of “high-
energy collisions tail” to too large energies, but it will certainly
give an indication on the role of the tail in thermal unimolecular
reactions. The effect will definitely be the largest at the low-
pressure limit and will decrease with increasing pressure. Using
ensemble average instead of average energy transferred in a
down collision is justified also because the latter is independent
of the temperature whilef(E), and therefore〈〈∆E〉〉d, is tem-
perature dependent. This reflects the interaction between
energy-transfer and chemical reaction which affects the energy
transfer process. In any event, the value of〈∆E〉all cannot be
used as a criterion for isolating the effect of the tail since it
averages up and down collisions. Each of the two can have a
large value, but the sum will be small. Thus, it will give no
indication of the actual average energy-transfer step size.
The following configurations of the probability function were

used in the solution of the master equation: (a) The whole
double-exponential expression was used. (b) The contribution
of the WC part of the biexponential function was removed. (c)
Only collisions that transfer large quantities of energy are
considered. Their probability is kept as in the full biexponential
function. The calculations are done by using the tail of the
double exponential distribution above a threshold value∆E# )
5〈〈∆E〉〉d. (d) The WC part of the biexponential function was
removed, as in (b), but only the tail above∆E# was considered.
This isolates the contribution of the strong collider to the tail
of the distribution. Comparison of the results obtained in the
above configurations enable us to draw conclusions that are
reported in the next section.

Results and Discussion

Before exploring the effect of the high-energy tail on the
unimolecular rate coefficient it is worthwhile to study the
relative contribution of the tail above the threshold to the
probability integral. This is given by the value of the integral

where∆E ) E′ - E and A is the cumulative probability of
supercollisions which includes the area of the tail above∆E#
and below-∆E#. A is energy dependent through the depen-
dence ofP(E′,E) and C(E) on E. In the present work, the
calculations were made at 35 088 cm-1 (103 kcal/mol) at 500
K and 42 100 cm-1 (120 kcal/mol) at 1000 and 1500 K. Table
1 shows the contribution of the strong collision part ofP(E′,E)
(eq 1) to the total probability of energy transfer and the values
of cumulative probabilitiesA for various values ofR2 and of
the temperature for cyclobutene/Ar at 10-3 Torr. Integration
of the strong collision term of the probability function, eq 1
(column 4 of Table 1) yields the contribution coming from this
part only. Fora2 ) 0.005 we obtain values of the integral which

vary from∼0.005 to∼0.09 depending on the value ofR2. This
shows that the coefficientsa1 anda2 do not represent the true
contributions of the WC and the SC parts of the probability
distribution function to the WC and SC collisions. That is to
say, the fraction of collisions described by the SC part only is
always larger than the value ofa2. Thusa2 ) 0.005 does not
mean that there are 0.5% SC (of which supercollisions are only
a part). Evaluation of the tail only, e.g., the value ofA,
calculated with the SC part only (column 5 of Table 1) indicates
that the tail of the SC part contributes up to 85% of thetotal
value ofA. This shows that in this case supercollisions are a
major part of the SC contribution. As the fraction of SC that
meets the criterion of high-energy collisions depends onR2,
the value ofa2 never gives the supercollision fraction of the
total probability. At low values ofR2 and low values ofa2 the
SC part contributeslessthan the WC part. It is the interplay
between all the coefficients in the probability function that
eventually determine the relative contribution of the WC and
SC parts.
For the case ofa2 ) 0.1 the situation is more complicated.

Table 1 gives the values of the SC part and ofA for various
values ofR2 and the temperature. Here the contribution of the
SC part can reach up to 70% of the total probability. The value
of A, however, can be as large as 77% of the SC part at low

A)∫-E-∆E#
P(∆E) d∆E+∫∆E#∞

P(∆E) d∆E (3)

TABLE 1: Values of the Energy-Transfer Probability
Integral

R2 -〈〈∆E〉〉d ∆E# 0/0.005a
tail onlyb

0/0.005
tail onlyc

0.995/0

T) 500 K
300 213 1064 5.00E-03 8.77E-05 1.75E-02
1500 218 1089 1.89E-02 7.62E-03 1.72E-02
3000 221 1105 3.39E-02 2.11E-02 1.69E-02
5000 224 1120 5.17E-02 3.83E-02 1.66E-02
10000 226 1130 8.25E-02 6.82E-02 1.26E-02

T) 1000 K
300 264 1320 5.00E-03 4.69E-05 9.34E-03
1500 284 1420 1.97E-02 5.93E-03 5.63E-03
3000 318 1590 3.45E-02 1.70E-02 3.40E-03
5000 354 1770 5.17E-02 3.13E-02 1.61E-03
10000 401 2003 8.33E-02 6.02E-02 7.54E-04

T) 1500 K
300 262 1308 5.00E-03 4.74E-05 9.44E-03
1500 285 1427 2.08E-02 6.63E-03 7.03E-03
3000 340 1700 3.64E-02 1.70E-02 2.27E-03
5000 405 2025 5.44E-02 3.08E-02 7.37E-04
10000 507 2534 9.00E-02 6.22E-02 1.36E-04

0/0.1a 0/0.1b 0.9/0c

T) 500 K
300 213 1064 1.00E-01 1.75E-03 1.58E-02
1500 306 1530 3.00E-01 9.03E-02 2.96E-03
3000 358 1790 4.40E-01 2.20E-01 9.23E-04
5000 385 1935 5.60E-01 3.50E-01 4.58E-04
10000 413 2065 7.00E-01 5.40E-01 1.93E-04

T) 1000 K
300 264 1320 1.00E-01 8.98E-04 8.08E-03
1500 579 2895 3.03E-01 3.20E-02 2.53E-05
3000 1002 5010 4.40E-01 6.66E-02 1.81E-08
5000 1356 6780 5.47E-01 1.22E-01 4.24E-11
10000 1749 8745 6.88E-01 2.54E-01 4.24E-14

T) 1500 K
300 257 1285 1.00E-01 1.00E-03 9.05E-03
1500 625 3125 3.10E-01 2.79E-02 1.30E-05
3000 1266 6330 4.39E-01 4.01E-02 2.03E-10
5000 1922 9610 5.59E-01 6.41E-02 2.78E-15
10000 2771 13855 6.89E-01 1.38E-01 1.61E-21

a Strong collision part ofP(E′,E) a1 ) 0, a2 ) 0.005, ora2 ) 0.1.
b Same as ina, but the integration is taken from the cutoff value∆E#.
cWeak collision part ofP(E′,E) a1 ) 0.995 and ora1 ) 0.9 anda2 )
0. The integration is performed from the cutoff value∆E#.

Thermal Unimolecular Rate Coefficients J. Phys. Chem. A, Vol. 101, No. 13, 19972447



temperatures and only 20% at high temperatures. This comes
about because the value of∆E# increases with temperature to
such an extent that the area encompassed byA decreases. This
behavior will have a profound effect on the values of the rate
coefficients as reported in the next section. The contribution
of the tail, the value ofA, considered over the wholeR2 and
temperature range is also not represented bya2. It varies over
a wide range of values depending on the initial conditions of
R2 and temperature. In those cases where the value ofA is
very high, the values ofa2 andR2 are unrealistically high and
probably do not represent physical reality.
We have evaluated the low-pressure thermal unimolecular

rate coefficients by solving the master equation with the four
configurations ofP(E′,E) listed in the method section. The
results of our calculations of the values of the rate coefficient
are given in Table 2 fora1 ) 0.995 anda2 ) 0.005 and in
Table 3 fora1 ) 0.9 anda2 ) 0.1. We analyze the results
section by section as listed in the methods section.
(a) Unimolecular Rate Coefficient from a Double-

Exponential Transition Probability. The effects of the weight

coefficientsai and the SC exponentR2 were explored. There
is a systematic increase in the value ofkuni as a function of the
increase in the value ofR2. It is worth noting the large effect
the SC term has on the value of the unimolecular rate coefficient.
In some cases the rate coefficient can be up to an order of
magnitude larger than the value obtained with the WC alone.
This happens when the values ofR2 and the temperature are
very high. Actually, these facts were reported before,27 and
the only reason these values appear in the Tables 2 and 3 is
that they serve as reference values with which all other numbers
in the tables will be compared.
(b) Net Contribution of the Strong Collision Part to the

Overall Rate Coefficient. In this part of our study, the
contribution of the SC part, the second term on the right-hand
side of eq 1, was evaluated by totally removing the WC
contribution. The values of the unimolecular rate coefficients
evaluated by using this form of the probability function in the
ME were compared with values of the reference rate coefficients
obtained by using the full double-exponential expression (eq
1) and reported in part (a). The contribution of the SC part in

TABLE 2: Average Energies, Cutoff Limits (cm-1), and Rate Coefficients (s- 1 Torr -1) as a Function of Temperature and the
Strong Collision Part of a Biexponential Probability Function (Eq 1, r1 ) 300 cm-1 and P ) 10-3 Torr, a1 ) 0.995,a2 ) 0.005
for All Calculations

R2 -〈∆E〉da -〈〈∆E〉〉d ∆E# 0.995/0.005b tail onlyc 0/0.005 tail only 0.995/0 tail only

T) 500 K kuni/P‚103
300 297 213 1064 64.0 5.35 1.20 0.00 63.0 5.10
1500 327 218 1089 72.0 7.60 6.90 5.50 64.0 6.80
3000 426 221 1105 85.0 17.0 11.0 3.60 63.0 3.30
5000 657 224 1120 100.0 24.0 18.0 17.0 60.0 8.40
10000 1510 226 1130 110.0 31.0 29.0 26.0 59.0 6.30

T) 1000 K kuni/P‚10-2

300 297 264 1320 49.9 6.50 0.25 .003 49.7 6.43
1500 327 284 1420 61.7 12.8 11.0 8.20 48.9 4.40
3000 426 318 1590 91.3 32.8 34.8 29.4 48.2 2.98
5000 657 354 1770 128 58.4 64.9 56.4 47.5 1.64
10000 1510 401 2003 183 102 113 101. 46.7 0.88

T) 1000 K kuni/P‚10-3

300 297 262 1308 29.5 4.84 0.148 .024 29.4 4.81
1500 327 285 1427 43.0 14.5 12.0 10.2 28.8 3.93
3000 426 340 1700 89.1 45.7 49.1 43.2 28.2 1.76
5000 657 405 2025 152 90.9 102 89.7 27.6 0.752
10000 1510 507 2534 252 164 188 164 26.8 0.193

a Asymptotic value obtained numerically as in ref 27.b The first number indicates the value ofa1 and the second indicates the value ofa2 at
which calculations were made.c The values ofkuni/P obtained when only values ofP(E′,E) above∆E# were considered.

TABLE 3: Average Energies, Cutoff Limits (cm-1), and Rate Coefficients (s- 1 Torr -1) as a Function of Temperature and the
Strong Collision Part of a Biexponential Probability Function (Eq 1, r1 ) 300 cm-1 and P ) 10-3 Torr, a1 ) 0.90,a2 ) 0.10 for
All Calculations

R2 -〈∆E〉da -〈〈∆E〉〉d ∆E# 0.9/0.1b tail onlyc 0/0.1 tail only 0.9/0 tail only

T) 500 K kuni/P‚103
300 297 213 1064 64.0 5.35 6.50 0.80 57.0 4.86
1500 725 306 1530 127. 55.6 78.0 48.0 46.5 1.51
3000 1716 358 1790 196. 97.2 147. 95.0 36.1 2.22
5000 3327 385 1935 240. 157. 200. 155. 28.9 d
10000 7094 413 2065 285. 201. 254. 200. 28.7 d

T) 1000 K kuni/P‚10-3

300 297 264 1320 4.99 0.65 0.50 .065 4.50 0.579
1500 725 579 2895 21.3 6.18 17.0 6.18 3.41 0.004
3000 1716 1002 5010 49.1 13.2 44.3 13.3 2.77 d
5000 3327 1356 6780 75.0 9.30 70.1 9.30 2.36 d
10000 7094 1749 8745 105. 1.50 99.8 1.50 1.96 d

T) 1500 K kuni/P‚10-4

300 297 257 1285 2.95 0.50 0.30 0.05 2.66 0.435
1500 725 625 3125 20.7 7.93 18.0 7.66 1.89 0.002
3000 1716 1266 6330 62.1 10.9 58.5 10.8 1.41 d
5000 3327 1922 9610 105. 3.20 101. 3.28 1.10 d
10000 7094 2771 13855 154. 0.55 150. 0.57 8.37 d

a Asymptotic value as obtained numerically.27 b The first number indicates the value ofa1 and the second indicates the value ofa2 at which
calculations were made.c The values of kuni/P obtained when only values ofP(E′,E) above∆E# were considered.d Values below numerical accuracy
of the calculations.
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eq 1 depends on the values of the coefficienta2 and the value
of the exponent,R2, and on the temperature. For cyclobutene
at 500 K witha2 ) 0.005, the SC part withR2 ) 1500 cm-1

contributes only∼7% to the rate coefficient but, withR2 )
10 000 cm-1 it contributes∼30%. The higher the temperature
the larger the contribution of the SC part. At 1500 K andR2 )
10 000 cm-1 it contributes more than 74%. Such a high value
of R2 at a1 ) 0.005 may not represent a physical reality.
As the contribution of the SC is increased25 to a2 ) 0.1, the

proportional contribution of this part to the overall rate
coefficient increases as well. It can reach∼90-100% depend-
ing on the value ofR2 and temperature. Exactly the same trends
are observed for cyclobutane fission (not shown), and the
conclusions are identical. It should be recalled that the SC part
contributes also to the transfer of small values of∆E. Thus
we next proceed to remove all contributions to the rate
coefficient from values ofP(E′,E) below the threshold value of
∆E#.
(c) Contribution of the Tail of Whole Transition Prob-

ability Function to the Value of the Rate Coefficient. This
part deals with the pure contribution of the tail of the
biexponential distribution above the threshold energy∆E# to
the value of the unimolecular rate coefficient In this part we
use the wholeP(E′,E) expression which contains WC and SC
parts. In the next section we use only the SC part of the
probability distribution.
As can be seen from Tables 2 and 3, there is a difference in

the magnitude of the contribution to the rate coefficient and in
the trend between thea2 ) 0.005 case and thea2 ) 0.1 case. In
the former, the tail of the biexponential function witha2 ) 0.005
contributes between∼15% and∼65% to the overall rate
coefficient, depending on the temperature and the value ofR2.
The larger the value ofR2 and the higher the temperature the
larger the contribution of the tail. It should be pointed out that
the value of∆E# increases with an increase in the value ofR2.
Thus, a 65% contribution at 1500 K andR2 ) 10 000 cm-1

takes place at a larger value of the cutoff limit than at lower
values ofR2. Even at the extremely high values of∆E#, the
contribution of the tail is very significant.
For the case ofa2 ) 0.1 the situation is more complicated.

The value of∆E# is so high that the contribution of the tail
starts to decline. At 1000 K∆E# ranges from∼3000 to∼9000
cm -1 and at 1500 K it ranges from∼3000 to∼14 000 cm-1.
For example, at 1500 K andR2 ) 1500 cm-1, realistic numbers
obtained from fitting trajectory results to a continuous prob-

ability function,21,24,26 the contribution of the tail to the
unimolecular rate coefficient is∼40%. AtR2 ) 10 000 cm-1

the contribution of the tail is only∼0.4% simply because the
value of ∆E# jumps to a whopping∼14 000 cm-1. The
collisions in the high∆E range, albeit of low probability, do
most of the energy-transfer work. The ever increasing value
of the onset of∆E# causes, despite an increase inP(E′,E) due
to an increase inR2, a decline in the value of the tail. At high
values of∆E# the tail is so low that it overcompensates for the
increase inP(E′,E) and there is an overall decline in the
contribution of the tail to the rate coefficient. This indicates
that, in this case, the combination of values ofa2 andR2 are
unrealistically too high. This limitation on the values ofa2 and
R2 is an important outcome of the present work in as much as
it provides constraints on the shape ofP(E′,E).
(d) Contribution of the Tail of the Strong Collision Part

of the Transition Probability Function to the Value of the
Rate Coefficient. In this part we examine the contribution of
the tail of the SC part of the probability function. For the case
of 0.005 SC the tail contributes∼90% of the value ofkuni
obtained from using the whole SC part. Its contribution to the
overall rate coefficient obtained from a biexponential function,
is, as mentioned before, between 15% and 65%. As the value
of R2 increases so does the value of∆E# and the value ofkuni.
However, the value of the cutoff∆E# does not vary by much,
and therefore the contribution of the tail is very significant.
The case ofa2 ) 0.1 at high temperatures provides a different

story, not unlike that in section (c). The SC part is the main
contributor to the value of the rate coefficient. However, when
one examines the contribution of the tail above∆E# there is
the bell-shape behavior seen in section (c). The rate coefficient
increases and then decreases again. The value of∆E# increases
to such values that even thoughP(E′,E) increases at high values
of ∆E the tail decreases even faster, causing a decline in the
value of the rate coefficient. This shows that some combinations
of high values ofa2 andR2 are physically unrealistic. There
are some indications that experimental results yield low values
of a2 and high values ofR2 while trajectory calculations
generally yield high values ofa2 but low values ofR2. The
combination of high values ofa2 andR2 is unphysical and is
probably the cause for the decline in the values of the rate
coefficient under such conditions.
As discussed above, the definition of∆E# is arbitrary and it

leads, in some cases, to unreasonably large threshold values.
This causes in turn an artificial reduction of the contributions

TABLE 4: Cutoff Limits (cm -1) and Rate Coefficients (s-1 Torr -1) Based on the Tail Only of the Distribution and on 〈〈∆E〉〉d
and on 〈〈∆E〉〉up

a1 ) 0.995,a2 ) 0.005 a1 ) 0.9,a2 ) 0.1

R2 ∆E# up ∆E# d up down ∆E# up ∆E# d up down

T) 500 K kuni/P‚103 kuni/P‚103
300 1064 1064 5.35 5.35 1064 1064 5.35 5.35
1500 1089 1089 7.60 7.60 1530 1530 55.6 55.6
3000 1105 1105 17.0 17.0 1790 1790 97.2 97.2
5000 1120 1120 24.0 24.0 1935 1935 157. 157.
10000 1130 1130 31.0 31.0 2065 2065 201. 201.

T) 1000 K kuni/P‚10-3 kuni/P‚10-3

300 1345 1320 0.54 0.65 1345 1320 0.54 0.65
1500 1455 1420 1.28 1.28 3030 2895 5.70 6.18
3000 1655 1590 3.18 3.28 5350 5010 11.6 13.2
5000 1855 1770 5.74 5.84 7310 6780 4.45 9.30
10000 2155 2003 9.97 10.2 9490 8745 0.56 1.50

T) 1500 K kuni/P‚10-3 kuni/P‚10-3

300 1435 1308 4.84 4.84 1435 1285 5.00 5.00
1500 1645 1427 12.0 14.5 4300 3125 40.3 79.3
3000 2285 1700 39.7 45.7 10000 6330 6.00 109.
5000 3180 2025 75.0 90.9 15750 9610 0.50 32.0
10000 4670 2534 113. 164. 22480 13855 0.00 5.50
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of the tail to the values of the rate coefficients. In addition to
the choice ofai andRi, an element of arbitrariness is the value
of the factor multiplying the value of〈〈∆E〉〉d. Another is the
choice of〈〈∆E〉〉d instead of〈〈∆E〉〉up, which, in the low-pressure
region, might be more appropriate. Table 4 shows a summary
of the calculations with∆E# based on 5〈〈∆E〉〉up and a
comparison with calculations obtained by using the previous
definition of ∆E#. As can be seen from the Table at 500 and
1000 K the values of〈〈∆E〉〉up do not differ significantly from
the values of〈〈∆E〉〉d. Thus, every conclusion obtained from
calculations using〈〈∆E〉〉d applies also to〈〈∆E〉〉up. At high
temperature, 1500 K, the values of〈〈∆E〉〉up are so high that
they cannot form a basis for the definition of∆E#. For example
at R2 ) 5000 and 10 000 cm-1 the values of∆E# emanating
from 〈〈∆E〉〉up are 15 750 and 22 480 cm-1, respectively. These
values are way over any reasonable estimate of a supercollision
limit. They clearly indicate that the values ofR2 are on the
high side.

Conclusion

The contribution of the tail of a biexponential energy-transfer
probability to the value of the low-pressure thermal unimolecular
rate coefficient was evaluated for a variety of experimental
conditions by using master equation calculations. An arbitrary
threshold value for high-energy transferring collisions was
defined and the fraction of supercollisions was evaluated. It
was shown that (1) the fraction of strong collisions,a2, and
their energy gap exponent,R2, donot represent the contribution
of the high-energy tail, e.g., supercollisions. (2) Not every
combination of the two parameters is allowed. High values of
both are unphysical and yield unacceptable values for the high-
energy threshold. (3) The fraction of supercollisions is a
function of the parameters that define the probability function
as well as of the temperature.
The contribution of the tail to the thermal unimolecular rate

coefficient for the isomerization of cyclobutene to butadiene
was evaluated for four cases:
(a) The whole probability function was considered. In this

case, adding a second exponential can increase the value of the
rate coefficient by∼2-8-fold depending on the values of the
fraction of the high-energy exponential,a2, and energy gap
constantR2.
(b) Only the strong collision part of the probability function

was considered. At low values ofa2 the contribution of this
part varies between 9% and 75% depending on the value ofR2.
At high values ofa2 it can vary between 60% and almost 100%
again depending on the value ofR2.
(c) Only the tail of part (a) was considered. The tail

contributes 12-20% at low values of the high-energy expo-
nential,a2, and energy gap constantR2. It contributes up to
65% at high values ofR2. At high values ofa2, the contribution
of the tail increases asR2 increases and can be as high as 50%,
and then it declines due to high values of the high-energy
threshold.
(d) Only the tail of (b) was considered. At low values ofa2

andR2 the contribution of the tail is only∼7% while for high

values ofR2 it can reach as much as 65%. For high values of
a2 the contribution of the tail varies withR2 from 38% at low
values ofR2, and it declines rapidly due to unrealistically high
threshold values.
In many of the cases considered, the tail contributes signifi-

cantly to the value of the unimolecular rate coefficient. In other
cases, high temperatures and large values ofa2 and R2, the
contribution declines due to a decrease in the tail at the very
high energies which define the supercollisions threshold. In
these cases, the parameters defining the biexponential probability
functions are clearly unrealistically high.
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